If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=-7x^2+12
We move all terms to the left:
x^2-(-7x^2+12)=0
We get rid of parentheses
x^2+7x^2-12=0
We add all the numbers together, and all the variables
8x^2-12=0
a = 8; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·8·(-12)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*8}=\frac{0-8\sqrt{6}}{16} =-\frac{8\sqrt{6}}{16} =-\frac{\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*8}=\frac{0+8\sqrt{6}}{16} =\frac{8\sqrt{6}}{16} =\frac{\sqrt{6}}{2} $
| -4x^2-5x+10=0 | | 3x+10=-4x-11 | | -3x^2=6x+8 | | 5x^2+12x+100=0 | | (5x-4)+3(2x-1)=7 | | (2a+1)^2=(a-1)^2 | | 3k^2=k(5-2k) | | X⁴-10x²+9=0 | | 6x+9=-x+16 | | 3x+19=0x-2 | | 11x+8=5x+68 | | N(t)=2.96t2+11.34t+59.9(0≤t≤5) | | 5X-1=6x+0 | | -5x-3=-3x-1 | | (2/3x)+5=25 | | 4e+3-e=30 | | 18x^2+54x-2=0 | | 18x^2-54x-2=0 | | (1/2)r+6=3+2r | | K²-4k+5=0 | | 10=46-4x | | 7-4x2=3x2-2x+5 | | .x^2-24x+140=0 | | 5-(5v+5)=4(1+3v) | | 5-(5v+5)=1+3v) | | 7x/8-x+3/10=2 | | 5-5v+5=1+3v) | | 4x^2-5x=58 | | 4x²+5=86 | | 5/3c=-7/3 | | 3(2b-1)+-7=6b-10 | | 4/x+2=7/2x-7 |